Miguel González

Statistical errors

Mean Absolute Error (MAE)

$$ \text{MAE}=\frac{1}{n}\sum_{i=1}^n|y_i-\hat{y}_i| $$

Mean Squared Error (MSE)

$$ \text{MSE}=\frac{1}{n}\sum_{i=1}^n\left(y_i-\hat{y}_i\right)^2 $$

Residual Sum of Squares (RSS)

$$ \text{RSS}=\sum_{i=1}^n\left(y_i-\hat{y}_i\right)^2 $$

Root Mean Square [Error/Deviation] (RMSE, RMS)

$$ \text{RMS}=\sqrt{\frac{1}{n}\sum_{i=1}^n x_i^2} $$

$$ \text{RMSD}=\sqrt{\text{MSE}}=\sqrt{\frac{1}{n}\sum_{i=1}^n\left(y_i-\hat{y}_i\right)^2} $$

Mean Absolute Percentage Error (MAPE)

$$ \text{MAPE}=\frac{100%}{n}\sum_{i=1}^n\left|\frac{y_i-\hat{y}_i}{y_i}\right| $$

MAPEInterpretation
<10%Highly accurate forecasting
10-20%Good forecasting
20-50%Reasonable forecasting
>50%Inaccurate forecasting

(Lewis, 1982, p.40)

Mean Square Percentage Error (MSPE)

$$ \text{MSPE}=\frac{1}{n}\sum_{i=1}^n\left(\frac{\hat{y_i}-y_i}{y_i}\right)^2 $$

Root Mean Square Percentage Error (RMSPE)

Swanson et al., Fomby, Shcherbakov et al.

$$ \text{RMSPE}=\sqrt{\text{MSPE}}=\sqrt{\frac{1}{n}\sum_{i=1}^n\left(\frac{\hat{y_i}-y_i}{y_i}\right)^2} $$

Mean Absolute Scaled Error (MASE)

$$ \text{MASE}=\frac{\text{MAE}}{Q} $$

with $Q$ as scaling constant.

Median Absolute Deviation (MAD)

$$ \text{MAD}=\text{median}\left(|y_i-\text{median}(y)|\right) $$

Symmetric Mean Absolute Percentage Error (sMAPE)

$$ \text{sMAPE}=\frac{100}{n}\sum_{i=1}^{n}\frac{|\hat{y}_i-y_i|}{(|y_i|+|\hat{y}_i|)/2} $$

Resources